Bayesian Spatial Kernel Smoothing for Scalable Dense Semantic Mapping
نویسندگان
چکیده
منابع مشابه
Sparse Bayesian Inference for Dense Semantic Mapping
Despite impressive advances in simultaneous localization and mapping, dense robotic mapping remains challenging due to its inherent nature of being a high-dimensional inference problem. In this paper, we propose a dense semantic robotic mapping technique that exploits sparse Bayesian models, in particular, the relevance vector machine, for highdimensional sequential inference. The technique is ...
متن کاملIntrospective Active Learning for Scalable Semantic Mapping
This paper proposes an active learning framework for semantic mapping in mobile robotics. In particular, our work explores the benefits of an introspective classifier over that of a more traditional non-introspective approach for active data selection. We extend the notion of introspection to a particular sparse Gaussian Process classifier, the Informative Vector Machine (IVM), and show that th...
متن کاملComparison of two QTL mapping approaches based on Bayesian inference using high-dense SNPs markers
To compare different QTL mapping methods, a population with genotypic and phenotypic data was simulated. In Bayesian approach, all information of markers can be used along with combination of distributions of SNP markers. It is assumed that most of the markers (95%) have minor effects and a few numbers of markers (5%) exert major effects. The simulated population included a basic population of ...
متن کاملScalable Bayesian Kernel Models with Variable Selection
Nonlinear kernels are used extensively in regression models in statistics and machine learning since they often improve predictive accuracy. Variable selection is a challenge in the context of kernel based regression models. In linear regression the concept of an effect size for the regression coefficients is very useful for variable selection. In this paper we provide an analog for the effect ...
متن کاملSpline smoothing in Bayesian disease mapping
In this paper, a class of Bayesian hierarchical disease mapping models with spline smoothing are motivated and developed for sequential disease mapping and for surveillance of disease risk trends and clustering. The methodological development aims to provide reliable information about the patterns (both over space and time) of disease risk and to quantify uncertainty. Bayesian disease mapping m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Robotics and Automation Letters
سال: 2020
ISSN: 2377-3766,2377-3774
DOI: 10.1109/lra.2020.2965390